Mineral Unsur Transisi Periode Keempat

Unsur unsur yang termasuk periode keempat meliputi tembaga (Cu), seng (Zn), skadium (Sc), Titanium (Ti), Vanadium (V), kromium (Cr), mangan (Mn), besi (Fe), kobalt (Co), dan nikel (Ni).

Unsur transisi dapat ditemukan dikerak bumi terutama sebagai bijih mineral (bijih logam) dengan kadar tertentu. Bijih besi merupakan mineral terbanyak di alam setelah O, Si, dan Al. Untuk lebih jelasnya keberadaan unsur transisi di alam dapat dilihat dalam uraian berikut.

Unsur unsur yang termasuk periode keempat

Skandium (Sc)

Skandium (Sc) terdapat dalam mineral torvetit (Sc2SiO7).

Titanium (Ti)

Unsur ini terdapat dalam mineralrutil (TiO2) yang terdapat dalam bijih besi sebagai ilmenit  (FeTi)2O3 dan ferrotitanate (FeTiO3) juga terdapat dalam karang, silikat, bauksit batubara, dan tanah liat.

Vanadium (V)

Vanadium terdapat dalam senyawa karnotit (K-uranil-vanadat) [(K2(UO2)2 (VO4)2.3H2)], dan vanadinit (Pb5(VO4)3Cl).

Kromium (Cr)

Bijih utama dari kromium di alam adalah kromit (FeO.Cr2O2) dan sejumlah kecil dalam kromoker.

Mangan (Mn)

Bijih utamanya berupa pirulosit (batu kawi) (MnO2), dan rodokrosit (MnCO3) dan diperkirakan cadangan Mn terbesar terdapat di dasar lautan.

Besi (Fe)

Besi (Fe) adalah unsur yang cukup melimpah di kerak bumi (sekitar 6,2% massa kerak bumi). Besi jarang ditemukan dalam keadaan bebas di alam. Besi umumnya ditemukan dalam bentuk mineral (bijih besi), seperti hematite (Fe2O3), siderite (FeCO3), dan magnetite (Fe3O4).

Logam Besi bereaksi dengan larutan asam klorida menghasilkan gas hidrogen. Reaksi yang terjadi adalah sebagai berikut :

Fe(s) +  2 H+(aq) ——>  Fe2+(aq) +  H2(g)

Kobalt (Co)

Kobalt terdapat di alam sebagai arsenida dari Fe, Co, Ni, dan dikenal sebagai smaltit, kobaltit (CoFeAsS) dan eritrit Co3(AsO4)2.8H2O.

Nikel (Ni)

Nikel ditemukan dalam beberapa senyawa berikut ini.

Sebagai senyawa sulfida         : penladit (FeNiS), milerit (NiS)

Sebagai senyawa arsen            : smaltit (NiCOFeAs2)

Sebagai senyawa silikat          : garnierit (Ni.MgSiO3)

Tembaga (Cu)

Tembaga (Cu) merupakan unsur yang jarang ditemukan di alam (precious metal). Tembaga umumnya ditemukan dalam bentuk senyawanya, yaitu bijih mineral, seperti Pirit tembaga (kalkopirit) CuFeS2, bornit (Cu3FeS3), kuprit (Cu2O), melakonit (CuO), malasit (CuCO3.Cu(OH)2­).

Semua senyawa Tembaga (I) bersifat diamagnetik dan tidak berwarna (kecuali Cu2O yang berwarna merah), sedangkan semua senyawa Tembaga (II) bersifat paramagnetik dan berwarna. Senyawa hidrat yang mengandung ion Cu2+ berwarna biru. Beberapa contoh senyawa yang mengandung Tembaga (II) adalah CuO (hitam), CuSO4.5H2O (biru), dan CuS (hitam).

Seng (Zn)

Seng (Zn) terdapat di alam sebagai senyawa sulfida seperti seng blende (ZnS), sebagai senyawa karbonat kelamin (ZnCO3), dan senyawa silikat seperti hemimorfit (ZnO.ZnSiO3.H2O).

Cara Pembuatan unsur-unsur transisi periode ke empat

Cara pembuatan Titanium

Produksi titanium yang makin banyak disebabkan karena kebutuhan dalam bidang militer dan industry pesawat terbang makin meningkat. Hal ini disebabkan karena titanium lebih disukai daripada aluminium dan baja. Aluminium akan kehilangan kekuatannya pada temperatur tinggi dan baja terlalu rapat (mempunyai kerapatan yang tinggi).

Langkah awal produksi titanium dilakukan dengan mengubah bijih rutil yang mengandung TiO2 menjadi TiCl4, kemudian TiCl4 dureduksi dengan Mg pada temperature tinggi yang bebas oksigen.

Persamaan reaksinya adalah sebagai berikut :

TiO2 (s)  + C(s) + 2Cl2(g)                       TiCl4(g) + CO2(g)

TiCl4(g) + 2Mg(s)                         Ti(s) + 2MgCl2(g)

Reaksi dilakukan pada tabung baja. MgCl2 dipindahkan dan dielektrolisis menjadi Mg dan Cl2. Keduanya kemudian didaurulangkan. Ti didapatkan sebagai padatan yang disebut sepon. Sepon diolah lagi dan dicampur dengan logam lain sebelum digunakan.

Cara pembuatan Vanadium

Produksi vanadium sekitar 80% digunakan untuk pembuatan baja. Dalam penggunaannya vanadium dibentuk sebagai logam campuran besi. Fero vanadium mengandung 35% – 95% vanadium. Ferrovanadium dihasilkan dengan mereduksi V205 dengan pereduksi campuran silicon dan besi. SiO2 yang dihasilkan direaksikan dengan CaO membentuk kerak CaSiO3(l). reaksinya sebagai berikut.

2 V205(s) + 5Si(s)                                           { 4V(s) + Fe(s) } + 5 SiO2(s)

SiO2(s) + CaO(s)                          CaSiO3

Kemudian ferrovanadium dipisahkan dengan CaSiO3.

Cara Pembuatan kromium

Krom merupakan salahsatu logam yang terpenting dalam industry logam dari bijih krom utama yaitu kromit, Fe(CrO2)2 yang direduksi dapat dihasilkan campuran Fe dan Cr disebut Ferokrom.

Reksinya sebagai berikut :

Fe(CrO2)2(s)  +4C(s)                        Fe(s)+2Cr(s) + 4CO(g)

Ferokrom ditambahkan pada besi membentuk baja.

Cara pembuatan mangan

Logam, mangan diperoleh dengan

  1. Mereduksi oksida mangan dengan natrium, magnesium, alumunium atau dengan proses elektrolisis.
  2. Proses aluminotermy dari senyawa MnO2, persamaan reaksinya:

Tahap 1 : 3MnO2(s)           Mn3O4(s)             +  O2(g)

Tahap 2 : 3Mn3O4(s)  + 8Al(s)              9Mn(s)                  +  4Al2O3(s)

Cara pembuatan Besi

Bahan dasar : Bijih besi hematit Fe2O3, magnetit Fe3O4, bahan tambahan batu gamping, CaCO3 atau pasir (SiO2). Reduktor kokes (C)

Dasar reaksi : Reduksi dengan gas CO, dari pembakaran tak sempurna C

Tempat : Dapur tinggi (tanur tinggi), yang dindingnya terbuat dari batu tahan api.

Reaksi dalam dapur tinggi adalah kompleks. Secara sederhana dapat dilihat pada penjelasan berikut. Dalam 24 jam rata-rata menghasilkan 1.000 – 2.000 ton besi kasar dan 500 ton kerak (terutama CaSiO3). Kira-kira 2 ton bijih, 1 ton kokes dan 0,3 ton gamping dapat menghasilkan 1 ton besi kasar.

Reaksi yang terjadi :

  1. Reaksi pembakaran.

Udara yang panas dihembuskan , membakar karbon terjadi gas CO2 dan panas. Gas CO2 yang naik direduksi oleh C menjadi gas CO.

C + O2 CO2

CO2 + C 2CO

  1. Proses reduksi

Gas CO mereduksi bijih.

Fe2O3 + 3CO 2 Fe + 3 CO2

Fe3O4 + 4CO 3 Fe + 4 CO2

Besi yang terjadi bersatu dengan C, kemudian meleleh karena suhu tinggi (1.5000C)

  1. Reaksi pembentukan kerak

CaCO3 CaO + CO2

CaO + SiO2 CaSiO3 kerak

pasir

Karena suhu yang tinggi baik besi maupun kerak mencair. Besi cair berada di bawah. Kemudian dikeluarkan melalui lubang bawah, diperoleh besi kasar dengan kadar C hingga 4,5%. Disamping C mengandung sedikit S, P, Si dan Mn. Besi kasar yang diperoleh keras tetapi sangat rapuh lalu diproses lagi untuk membuat baja dengan kadar C sebagai berikut:

baja ringan kadar C : 0,05 – 0,2 %

baja medium kadar C : 0,2 – 0,7 %

baja keras kadar C : 0,7 – 1,6 %

Pembuatan baja :

Dibuat dari besi kasar dengan prinsip mengurangi kadar C dan unsur-unsur campuran yang lain. Ada 3 cara :

  1. Proses Bessemer :

Besi kasar dibakar dalam alat convertor Bessemer. Dari lubang-lubang bawah dihembuskan udara panas sehingga C dan unsur-unsur lain terbakar dan keluar gas. Setelah beberapa waktu kira-kira ¼ jam dihentikan lalu dituang dan dicetak.

  1. Open-hearth process

Besi kasar, besi tua dan bijih dibakar dalam alat open-hearth. Oksida-oksida besi (besi tua, bijih) bereaksi dengan C dan unsur-unsur lain Si, P, Mn terjadi besi dan oksida-oksida SiO2, P2O5, MnO2 dan CO2. dengan demikian kadar C berkurang.

  1. Dengan dapur listrik.

Untuk memperoleh baja yang baik, maka pemanasan dilakukan dalam dapur listrik. Hingga pembakaran dapat dikontrol sehingga terjadi besi dengan kadar C yang tertentu.

Cara Pembuatan Kobalt

Kobalt di alam diperoleh sebagai biji smaltit (CoAs2) dan kobaltit (CoAsS) yang biasanya berasosiasi dengan Ni dan Cu. Untuk pengolahan biji kobalt dilakukan sebagai berikut :

Pemanggangan :

CoAs (s)               Co2O3(s) + As2O3(s)

Co2O3(s) + 6HCl           2 CoCl3(aq) + 3 H2O(l)

Zat-zat lain seperti Bi2O3 dan PbO diendapkan dengan gas H2S

Bi2O3(s) + 3 H2S(g)                 Bi2S3 (aq) + 3 H2O(l)

PbO(s) +  H2S(g)                     PbS(s)  +      H2O(l)

Pada penambahan CoCO3 (s) dengan pemanasan akan diendapkan As dan Fe sebagai karbonat. Dengan penyaringan akan diperoleh CoCl3. Tambahan zat pencuci mengubah CoCl3 menjadi Co2O3. Selanjutnya CoCO3 direduksi dengan gas hydrogen, menurut reaksi :

Co2O3 (s)  + H2(g)                  2 CO(s) + 3 H2O (g)

Penggunaan kobalt antara lain sebagai aloi, seperti alnico, yaitu campuran Al, Ni, dan Co.

Cara pembuatan nikel

Proses pengolahan biji nikel dilakukan untuk menghasilkan nikel matte yaitu produk dengan kadar nikel di atas 75 persen. Tahap-tahap utama dalam proses pengolahan adalah sebagai berikut:

– Pengeringan di Tanur Pengering bertujuan untuk menurunkan kadar air bijih laterit yang dipasok dari bagian Tambang dan memisahkan bijih yang berukuran 25 mm.

– Kalsinasi dan Reduksi di Tanur untuk menghilangkan kandungan air di dalam bijih, mereduksi sebagian nikel oksida menjadi nikel logam, dan sulfidasi.

– Peleburan di Tanur Listrik untuk melebur kalsin hasil kalsinasi/reduksi sehingga terbentuk fasa lelehan matte dan terak

– Pengkayaan di Tanur Pemurni untuk menaikkan kadar Ni di dalam matte dari sekitar 27 persen menjadi di atas 75 persen.
– Granulasi dan Pengemasan untuk mengubah bentuk matte dari logam cair menjadi butiran-butiran yang siap diekspor setelah dikeringkan dan dikemas.

Cara pembuatan tembaga

Pada umumnya bijih tembaga mengandung 0,5 % Cu, karena itu diperlukan pemekatan biji tembaga. Langkah-langkah pengolahan bijih tembaga adalah seperti skema berikut

Reaksi proses pengolahannya adalah :

  1. 2 CuFeS2(s) + 4 O2                                           800 0 C   Cu2S(l) + 2 FeO (s) + 3 SO2 (g)
  2. FeO(s) + SiO2 (s)                                          14000C       FeSiO3 (l)

Cu2S dan kerak FeSiO3 (l) dioksidasi dengan udara panas, dengan reaksi sebagai berikut:

2 Cu2S(l) + 3 O2 (g)                  2 Cu2O(l)  + 2 SO2(g)

2 Cu2O(l) + Cu2S(s)                 6 Cu(l) + SO2 (g)

3 Cu2S(l) + 3 O2                     6 Cu(l) + 3 SO2(g)

Pada reaksi oksidasi tersebut diperoleh 98% – 99% tembaga tidak murni. Tembaga tidak murni ini disebut tembaga blister atau tembaga lepuh. Tembaga blister adalah tembaga yang mengandung gelembung gas SO2 bebas.

Untuk memperoleh kemurnian Cu yang lebih tinggi, tembaga blister dielektrolisis dengan elektrolit CuSO4 (aq). Pada elektrolisis, sebagai electrode negatif (katode) adalah tembaga murni dan sebagai electrode positif (anode) adalah tembaga blister.

Cara pembuatan zink

Logam seng telah diproduksi dalam abat ke-13 di Indina dengan mereduksi calamine dengan bahan-bahan organik seperti kapas. Logam ini ditemukan kembali di Eropa oleh Marggraf di tahun 1746, yang menunjukkan bahwa unsur ini dapat dibuat dengan cara mereduksi calamine dengan arang. Bijih-bijih seng yang utama adalah sphalerita (sulfida), smithsonite (karbonat), calamine (silikat) dan franklinite (zine, manganese, besi oksida). Satu metoda dalam mengambil unsur ini dari bijihnya adalah dengan cara memanggang bijih seng untuk membentuk oksida dan mereduksi oksidanya dengan arang atau karbon yang dilanjutkan dengan proses distilasi.